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This appendix gives derivations of the expected values and variances presented in the main
text. Section A1 precisely describes the assumptions of the terregenesis model. Then we give
notation (section A2) and derive distributions for: the number of species in a fragment (section
A3); the number of species shared between two fragments (section A4); the total number of
species in two fragments (section A5); the similarity ratio of two fragments (section A6); the
number of extinct species (section A7); and the number of endemic species (section A8). For
convenience, basic laws of probability used in the derivations are summarized in section A9.

A1 Model assumptions

The terragenesis model assumes:

1. The number of species in the original landscape is fixed;

2. The number of species in any other fragment in the terrageny is a random variable with
expected value given by the species area rule (SAR);

3. The z parameter of the SAR model is fixed;

4. Species are mutually independent;

5. The conditional probability of a species being in a fragment, given it is in the parent
fragment, is equal to the quotient of the expected number of species in the fragment and
the expected number of species in the parent fragment. In particular, the number of
species in a fragment given the number of species in the parent fragment is independent
of the number of species in all other ancestor fragments (conditional independence).

These assumptions imply that the terrageny tree is constructed as a Bayesian network with
binomial random variables.

A2 Notation

All constants are small letters and random variables are capital letters.
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Notation Meaning
E[X] expected value of the random variable X
Var[X] variance of X
A complement of the event A
f0 original landscape
fk−1, fk, . . . parent fragment, child fragment
fk(1) , fk(2) , . . . sibling fragments of generation k, all children of fk−1(1)
nk number of sibling fragments of generation k, all children of fk−1(1)
ak area of fk
s0 number of species in the original landscape (constant by assumption)
Sk number of species in fk (random variable), with k ≥ 1
Fki Bernoulli variable describing the event ‘species i is present in fragment fk’
Ik,h number of species shared by fragments fk and fh (I for intersection)
Uk,h total number of species present in fragments fk and fh (U for union)
SIM k,h similarity of fragments fk and fh
Xk number of species from fk that go extinct by the present day
Dk number of species endemic to fk

A3 Number of species in a fragment

We denote by Fki the Bernoulli variable for the event ‘species i is present in fragment fk’, with
i denoting a species present in the original landscape, i = 1, . . . , s0. For all species i, we assume
that the conditional probability of species i being in fragment fk, given it is in its parent fk−1,
is equal to the proportion of the expected number of species in fk to the expected number of
species in fk−1 (section A1). The probability only depends on the amount of habitat loss in
a habitat fragmentation event, and not on species traits. All species are assumed to have the
same probability to persist in fk. Thus for all species i = 1, . . . , s0 and all fragments fk with
k ≥ 1,

P(Fki | Fk−1i) =
E[Sk]

E[Sk−1]
. (1)

The expected values, E[Sk], of the numbers of species in fragments are assumed related to the
areas of the fragments through the SAR, E[Sk] = cazk (section A1), with z = 0.25 used here.

From the conditional probability defined in (1) and the chain rule of probability (section
A9) we can obtain the probability of a species i being in a fragment k. By definition of the
terrageny, a species i that is present in fk is also present in all its ancestor fragments up to the
original landscape. Therefore the joint probability of the Fki events from f0 up to fk is equal
to Fki ,

P(Fki) = P(Fki ∩ Fk−1i ∩ Fk−2i ∩ . . . ∩ F1i), (2)

with fk−1 denoting the parent fragment of fk. Applying the chain rule of probability,

P(Fki) = P(Fki | Fk−1i ∩ Fk−2i ∩ . . . ∩ F1i)× P(Fk−1i | Fk−2i ∩ . . . ∩ F1i)× . . .× P(F1i). (3)

The probability P(Fki | Fk−1i), that species i is present in the fragment fk given it is in its
parent fragment fk−1, is independent of whether species i is present in all anterior ancestors of
fk−1 (section A1), so

P(Fki | Fk−1i ∩ Fk−2i ∩ . . . ∩ F1i) = P(Fki | Fk−1i). (4)

Substituting (4) in (3) for all k ≥ 1, (3) simplifies to

P(Fki) = P(Fki | Fk−1i)× P(Fk−1i | Fk−2i)× . . .× P(F1i) (5)
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and from (1) we get

P(Fki) =
E[Sk]

E[Sk−1]
× E[Sk−1]

E[Sk−2]
× . . .× E[S1]

s0

=
E[Sk]

s0
. (6)

The (unconditional) probability of species i being in fragment k is a Bernoulli random variable.
Because species are assumed independent (section A1), the sum

Sk =

s0∑
i=1

Fki , (7)

equal to the number of species in fragment k, is distributed as Binomial(s0, pk) for k ≥ 1, with
pk = E[Sk]/s0, and therefore has variance

Var[Sk] = s0pk · (1− pk)

= E[Sk] ·
(

1− E[Sk]

s0

)
(8)

(section A9). The proportion Sk/s0 has Var[Sk

so
] = E[Sk]

s20
·
(

1− E[Sk]
s0

)
.

A4 Number of species shared between two fragments

We consider two distinct fragments fk and fh anywhere in the terrageny, with fr their most
recent common ancestor. fr can be f0. The random variable Ik,h is defined to be the number
of species that fk and fh have in common. It is the sum, over the s0 species in f0, of the joint
distribution of Fki and Fhi

describing the event ‘species i is present in fk and in fh’:

Ik,h =

s0∑
i=1

Fki ∩ Fhi
. (9)

From the chain rule,
P(Fki ∩ Fhi

) = P(Fki | Fhi
)× P(Fhi

). (10)

But P(Fki | Fhi
) = P(Fki | Fri) by the assumptions of the model (section A1), and it is

straightforward to see that (6) generalizes to

P(Fki | Fgi) =
E[Sk]

E[Sg]
(11)

for any ancestor fragment fg of fk. So

P(Fki ∩ Fhi
) = P(Fki | Fri)× P(Fhi

)

=
E[Sk] · E[Sh]

E[Sr] · s0
. (12)

From assumptions of independence of species and fragments (section A1) the Fki ∩ Fhi
and

Fkj ∩ Fhj
are mutually independent for all i 6= j, so the Fki ∩ Fhi

are independent identically
distributed (i.i.d.) Bernoulli variables of parameter

pk∩h =
E[Sk] · E[Sh]

E[Sr] · s0
. (13)
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Their sum Ik,h follows a Binomial distribution of parameters s0 and pk∩h, with expected value

E[Ik,h] = s0 · pk∩h

=
E[Sk] · E[Sh]

E[Sr]
(14)

and variance

Var[Ik,h] = s0 · pk∩h · (1− pk∩h)

= E[Ik,h] ·
(

1− E[Ik,h]

s0

)
. (15)

A5 Total number of species in two fragments

The total number of species in fragments fk and fh, denoted Uk,h, corresponds to the size of
the union of the two sets of species. Again we start by defining Bernoulli variables for the event
‘species i is in fk or in fh or both’:

P(Fki ∪ Fhi
) = P(Fki) + P(Fhi

)− P(Fki ∩ Fhi
)

= pk + ph − pk∩h. (16)

The sum of the Bernoulli variables over the s0 species in f0 gives the number of species in the
union:

Uk,h =

s0∑
i=1

Fki ∪ Fhi
. (17)

The Fki ∪ Fhi
are i.i.d. Bernoulli variables and their sum Uk,h follows a Binomial distribution

of parameters s0 and pk∪h = pk + ph − pk∩h. The expected value and variance of Uk,h are

E[Uk,h] = s0 · pk∪h = s0 · (pk + ph − pk∩h)

= E[Sk] + E[Sh]− E[Sk] · E[Sh]

E[Sr]
(18)

and

Var[Uk,h] = s0 · pk∪h · (1− pk∪h)

= E[Uk,h] ·
(

1− E[Uk,h]

s0

)
. (19)

A6 Similarity of two fragments

The Jaccard similarity between two sets is defined as the ratio of the size of their intersection
over the size of their union. We denote by SIM k,h the Jaccard similarity between fragments fk
and fh,

SIM k,h =
Ik,h
Uk,h

. (20)

The random variables Ik,h and Uk,h are supported on the integers 0, . . . , s0, so the quotient
is supported on the set of fractions a/b with a and b in 0, . . . , s0 and a ≤ b. SIM k,h can be
undefined if Uk,h is zero, an event that has probability (1− pk∪h)s0 , typically very small.
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The probability of SIM k,h being equal to a ratio q is the sum of the probabilities of the
events (Ik,h = i,Uk,h = u) over pairs i and u such that i/u = q,

P(SIM k,h = q) =
∑

(i,u) such that i
u=q

i∈[0,u],u∈[1,s0]

P(Ik,h = i, Uk,h = u). (21)

The chain rule can be applied:

P(Ik,h = i, Uk,h = u) = P(Ik,h = i | Uk,h = u)× P(Uk,h = u). (22)

The second term in the product is known because the distribution of the union size is known
(section A5). The first term in the product can be found using similar reasoning to previous
sections, as follows. First, by the chain rule,

P(Fki ∩ Fhi
| Fki ∪ Fhi

) =
P((Fki ∩ Fhi

) ∩ (Fki ∪ Fhi
))

P(Fki ∪ Fhi
)

=
P(Fki ∩ Fhi

)

P(Fki ∪ Fhi
)

=
E[Ik,h]/s0
E[Uk,h]/s0

. (23)

Therefore, by independence of species,

(Ik,h | Uk,h = u) ∼ Binomial(u, pI|U) (24)

where

pI|U =
E[Ik,h]

E[Uk,h]
. (25)

Therefore the expected value and variance of the number of shared species given the total
number of species in fk and fh are

E[Ik,h | Uk,h = u] = u · pI|U

= u · E[Ik,h]

E[Uk,h]
(26)

Var[Ik,h | Uk,h = u] = u · pI|U · (1− pI|U)

= u · E[Ik,h]

E[Uk,h]
·
(

1− E[Ik,h]

E[Uk,h]

)
. (27)

Because SIM k,h is not defined with probability (1 − pk∪h)s0 , it has no expected value in the
strictest sense. But because (1 − pk∪h)s0 is typically so small, it makes sense to denote by
E[SIM k,h] the expected value of SIM k,h conditioned on it being defined. We then have, by the
definition of the expected value and equation (21),

E[SIM k,h] =
1

1− (1− pk∪h)s0

∑
q

q · P(SIM k,h = q)

=
1

1− (1− pk∪h)s0

s0∑
u=1

u∑
i=0

i

u
· P(Ik,h = i, Uk,h = u). (28)

Replacing with (22), we get

E[SIM k,h] =
1

1− (1− pk∪h)s0

s0∑
u=1

u∑
i=0

i

u
· P(Ik,h = i | Uk,h = u) · P(Uk,h = u)

=
1

1− (1− pk∪h)s0

s0∑
u=1

1

u
· P(Uk,h = u) ·

u∑
i=0

i · P(Ik,h = i | Uk,h = u) (29)
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The sum over i is the expectation of Ik,h | Uk,h = u, determined in equation (26). Replacing,

E[SIM k,h] =
1

1− (1− pk∪h)s0

s0∑
u=1

1

u
· P(Uk,h = u) · u · pI|U

=
pI|U

1− (1− pk∪h)s0
·

s0∑
u=1

P(Uk,h = u) (30)

= pI|U . (31)

P(Uk,h = 0) = (1− pk∪h)s0 varies with E[Sk],E[Sh],E[Sr] and s0. From simulations, if the sum
E[Sk] + E[Sh] > 10, then P(Uk,h = 0) < 0.001.

The notation Var[SIM k,h] here is used to denote variance conditional on SIM k,h being
defined. To obtain the variance we use the well known expression

Var[SIM k,h] = E[SIM 2
k,h]− E[SIM k,h]2, (32)

and compute the expected square ratio using similar reasoning to equations (28) and (29):

E[SIM 2
k,h] =

1

1− (1− pk∪h)s0

s0∑
u=1

u∑
i=0

i2

u2
· P(Ik,h = i, Uk,h = u)

=
1

1− (1− pk∪h)s0

s0∑
u=1

1

u2
· P(Uk,h = u) ·

u∑
i=0

i2 · P(Ik,h = i | Uk,h = u). (33)

The sum over i is the expected square intersection size conditioned on u. We can obtain its
value from the variance of Ik,h | Uk,h = u given in equation (27) and the square of its expected
value (26):

E[(Ik,h | Uk,h)2] = Var[Ik,h | Uk,h] + E[Ik,h | Uk,h]2

= u · pI|U · (1− pI|U) + u2 · p2I|U . (34)

Replacing in (33), distributing and noting the expression of the inverse union expectation we
obtain:

E[SIM 2
k,h] =

1

1− (1− pk∪h)s0

s0∑
u=1

1

u2
· P(Uk,h = u) ·

[
u · pI|U · (1− pI|U) + u2 · p2I|U

]
=

1

1− (1− pk∪h)s0

[
s0∑
u=1

1

u2
· P(Uk,h = u) · u · pI|U · (1− pI|U)

+

s0∑
u=1

1

u2
· P(Uk,h = u) · u2 · p2I|U

]

=
1

1− (1− pk∪h)s0

[
pI|U · (1− pI|U)

s0∑
u=1

1

u
P(Uk,h = u) + p2I|U ·

s0∑
u=1

P(Uk,h = u)

]

= pI|U · (1− pI|U) · E
[

1

Uk,h

]
+ p2I|U , (35)

where E[1/Uk,h] denotes the expectation of 1/Uk,h conditional on it being defined. Replacing
in the definition of the variance, equation (32), we get

Var[SIM k,h] = pI|U · (1− pI|U) · E
[

1

Uk,h

]
+ p2I|U − p2I|U (36)

= pI|U · (1− pI|U) · E
[

1

Uk,h

]
. (37)
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E
[

1
Uk,h

]
also needs to be approximated as there is no closed form for this expectation. There

is ongoing research to find expansions of the inverse moments of binomial variables [Marciniak
and Wesolowski, 1999, Audenaert, 2008, Znidaric, 2009]. If X ∼ Binomial(n, p) and E[X] is
large then the first inverse moment can easily be approximated as

lim
E[X]→+∞

E

[
1

X

]
=

1

E[X]
. (38)

This approximation is poor, however, for small E[X]:

lim
E[X]→0

E

[
1

X

]
= 0 6= lim

E[X]→0

1

E[X]
= +∞. (39)

From computations over a range of n (< 105) and p (> 10−5) values the following bounds can
be given:

E[X] > 30 ⇒
∣∣∣∣E [ 1

X

]
− 1

E[X]

∣∣∣∣ . 0.001

E[X] > 10 ⇒
∣∣∣∣E [ 1

X

]
− 1

E[X]

∣∣∣∣ . 0.01

E[X] > 2 ⇒
∣∣∣∣E [ 1

X

]
− 1

E[X]

∣∣∣∣ . 0.1.

For small values of n the difference between E
[
1
X

]
and 1

E[X]
can also be very small if p is large

enough. In the case where X = Uk,h, the limit (38) will typically be good enough, at least for
patches of non-negligible size and species-rich taxonomic groups.

If the approximation from equation (38) is not sufficient, i.e., in cases of small numbers of

species because of drastic habitat loss, E
[

1
Uk,h

]
can be computed from the exact formula

(1− (1− pk∪h)s0) · E
[

1

Uk,h

]
=

s0∑
u=1

1

u

(
s0
u

)
· puk∪h · (1− pk∪h)s0−u. (40)

The following sum provides a close fit with a shorter computation time [Marciniak and Wesolowski,
1999]:

(1− (1− pk∪h)s0) · E
[

1

Uk,h

]
=

s0∑
u=1

(1− pk∪h)s0−u

u
− (1− pk∪h)s0

s0∑
u=1

1

u
. (41)

For even faster computation but slightly larger error [Znidaric, 2009]:

(1−qs0k∪h) ·E
[

1

Uk,h

]
=

1

E[Uk,h]
·
(

1 +
qk∪h

E[Uk,h]
+

qk∪h(1 + qk∪h)

E[Uk,h]2
+

qk∪h(1 + 4qk∪h + q2k∪h)

E[Uk,h]3
+ . . .

)
,

(42)
with qk∪h = 1− pk∪h.

Given the simplest approximation, from (38), the variance of the Jaccard similarity ratio
can then be expressed as:

Var[SIM k,h] ≈ pI|U · (1− pI|U) · 1

E[Uk,h]

=
E[Ik,h]

E[Uk,h]2

(
1− E[Ik,h]

E[Uk,h]

)
(43)

=
E[SIM k,h](1− E[SIM k,h])

E[Uk,h]
. (44)
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A7 Number of extinct species

A species i present in fk goes extinct from the lineage of fk if, for each child fragment fk+1(c) ,
the species is either not present in fk+1(c) , or is present, but goes extinct subsequently from
the lineage of fk+1(c) . We denote by Xki the Bernoulli variable describing the event ‘species i
is present in fk but goes extinct from the lineage of fk’. Xki is defined for all species in the
landscape, i = 1, . . . , s0. A species that goes extinct from the lineage of a fragment is present
in that fragment by definition, therefore the probability of Xki can be expressed as

P(Xki) = P(Xki ∩ Fki)

= P(Xki |Fki)× P(Fki). (45)

If c = 1, . . . , nk+1 index the children fk+1(c) of fk, then Xki |Fki is expressed in a recursive manner
using F

k+1
(c)
i

and X
k+1

(c)
i

conditioned on Fki :

Xki |Fki =

nk+1⋂
c=1

((F
k+1

(c)
i
| Fki) ∪ (F

k+1
(c)
i
∩X

k+1
(c)
i
| Fki)). (46)

By independence assumptions of the model (section A1),

P(Xki |Fki) =

nk+1∏
c=1

P((F
k+1

(c)
i
| Fki) ∪ (F

k+1
(c)
i
∩X

k+1
(c)
i
| Fki)) (47)

The events ‘species i is not in fk+1(c) ’ and ‘species i is in fk+1(c) , but goes extinct subsequently
from its lineage’ are disjoint, so the probability of their union is the sum of their probabilities:

P(Xki |Fki) =

nk+1∏
c=1

[
P(F

k+1
(c)
i
| Fki) + P(F

k+1
(c)
i
∩X

k+1
(c)
i
| Fki)

]
. (48)

From (1),

P(F
k+1

(c)
i
| Fki) = 1− P(F

k+1
(c)
i
| Fki)

= 1−
E[Sk+1(c) ]

E[Sk]
. (49)

From the chain rule (section A9) and the conditional independence of presence in ancestors
given the presence in the parent (section A1), the probability that species i is present in fk+1(c)

and goes extinct from its lineage given it is in fk is

P(F
k+1

(c)
i
∩X

k+1
(c)
i
| Fki) = P(X

k+1
(c)
i
| F

k+1
(c)
i
∩ Fki)× P(F

k+1
(c)
i
| Fki)

= P(X
k+1

(c)
i
| F

k+1
(c)
i

)× P(F
k+1

(c)
i
| Fki) (50)

=
E[Xk+1(c) ]

E[Sk+1(c) ]
×

E[Sk+1(c) ]

E[Sk]

=
E[Xk+1(c) ]

E[Sk]
(51)

The probability of species i going extinct from the lineage of fk+1(c) given it is in fk+1(c) is the
expected number of species that are in fk+1(c) but go extinct from the lineage of fk+1(c) , divided
by the expected number of species in fk+1(c) , because all species have an equal probability of
going extinct from the lineage of fk+1(c) . We can therefore recursively express the probability
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that species i in fk goes extinct from the lineage of fk using the expected number of extinctions
from the child fragments of fk:

P(Xki |Fki) =

nk+1∏
c=1

[
1−

E[Sk+1(c) ]

E[Sk]
+ P(X

k+1
(c)
i
| F

k+1
(c)
i

)×
E[Sk+1(c) ]

E[Sk]

]
(52)

=

nk+1∏
c=1

[
1−

E[Sk+1(c) ]

E[Sk]
+

E[Xk+1(c) ]

E[Sk]

]

=
1

E[Sk]nk+1

nk+1∏
c=1

[E[Sk]− E[Sk+1(c) ] + E[Xk+1(c) ]] . (53)

The equation for ek in the main text follows from (52).
We denote pXk|Fk

= P(Xki |Fki) so that

P(Xki) = pXk|Fk
· P(Fki), (54)

and from (6) we get

P(Xki) = pXk|Fk
· E[Sk]

s0
. (55)

Xki is a Bernoulli variable of probability pXk|Fk
· E[Sk]

s0
. The number Xk of species that are in fk

but that go extinct from the lineage of fk is the sum of the i.i.d. Bernoulli variables Xki over
the number s0 of species present in the original landscape:

Xk =

s0∑
i=1

Xki . (56)

Xk follows a Binomial distribution of parameters s0 and pXk|Fk
· E[Sk]

s0
. We obtain the expected

value and variance of Xk from the properties of the Binomial distribution:

E[Xk] = s0 · pXk|Fk
· E[Sk]

s0
= pXk|Fk

· E[Sk]

=
1

E[Sk]nk+1−1

nk+1∏
c=1

[E[Sk]− E[Sk+1(c) ] + E[Xk+1(c) ]] (57)

Var[Xk] = s0 · pXk|Fk
· E[Sk]

s0
·
(

1− pXk|Fk
· E[Sk]

s0

)
= E[Xk] ·

(
1− E[Xk]

s0

)
. (58)

The expected value and variance of Xk are computed recursively. The number of extinctions
for present time fragments that have not been split is 0; this is the recursive base case. The
expected number of extinctions that occurred in the whole landscape is obtained by setting k
to 0. The variance of the proportion of species from the original landscape that go extinct by
the present day, a quantity given in the main text, is

Var[X0]

s20
=

E[X0]

s20
(1− E[X0]

s0
)

=
e0
s0

(1− e0),

where e0 is defined in the main text.
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A8 Number of endemic species

A species i is defined to be “dominated” by a fragment fk in the terrageny if i is in fk and the
only present-day patches containing i (if any) are direct descendants of fk. If fk is a present-day
patch, then this is the same as saying i is endemic to fk within the modern landscape. All
s0 species present in the original landscape are dominated by f0. And reciprocally a species
dominated by a fragment fk is also dominated by its parent fk−1 and by all its ancestors up
to the original landscape. Dki denotes the event ‘species i is dominated by fragment fk’. From
the chain rule of probability and the conditional independence of a fragment to all its ancestors
given its parent (section A1),

P(Dki) = P(Dki ∩Dk−1i ∩Dk−2i ∩ . . . ∩D1i) (59)

= P(Dki | Dk−1i)× P(Dk−1i | Dk−2i)× . . .× P(D1i). (60)

Thus we can obtain the probability for species i to be dominated by fk by evaluating for fk
and each other patch in the ancestry of fk the conditional probability that i is dominated by
the patch given that it is dominated by its parent.

A species i is dominated by child fragment fk(1) given that it is dominated by fk−1(1) (i.e.,
D

k
(1)
i
| D

k−1(1)i
) if it is present in fk(1) and if, for any c = 2, . . . , nk, it is not present in fk(c)

or is but then goes extinct from the lineage of fk(c) . Recall that here c indexes the sibling
fragments of fk(1) , children of fk−1(1) . This conditional event can be expressed with extinction
and presence events, respectively X

k
(c)
i

and F
k
(c)
i

, for the nk children of fk−1(1) :

(D
k
(1)
i
| D

k−1(1)i
) = (F

k
(1)
i
| D

k−1(1)i
)

nk⋂
c=2

((F
k
(c)
i
| D

k−1(1)i
) ∪ (F

k
(c)
i
∩X

k
(c)
i
| D

k−1(1)i
)). (61)

From mutual independence of fragment-specific events and by disjointness of events, the prob-
ability of (D

k
(1)
i
| D

k−1(1)i
) is

P(D
k
(1)
i
| D

k−1(1)i
) = P(F

k
(1)
i
| D

k−1(1)i
)

nk∏
c=2

(P(F
k
(c)
i
| D

k−1(1)i
) + P(F

k
(c)
i
∩X

k
(c)
i
| D

k−1(1)i
)). (62)

The probability that species i is in fk(1) given it is dominated by its parent, fk−1(1) , is the same
as the probability i is present in fk(1) given it is present in fk−1(1) . So

P(F
k
(1)
i
| D

k−1(1)i
) = P(F

k
(1)
i
| F

k−1(1)i
)

=
E[Sk(1) ]

E[Sk−1(1) ]
. (63)

Applying this reasoning to all events in (62) conditioned on D
k−1(1)i

implies that

P(D
k
(1)
i
| D

k−1(1)i
) = P(F

k
(1)
i
| F

k−1(1)i
)

nk∏
c=2

[
P(F

k
(c)
i
| F

k−1(1)i
) + P(F

k
(c)
i
∩X

k
(c)
i
| F

k−1(1)i
)
]

= P(F
k
(1)
i
| F

k−1(1)i
)

nk∏
c=2

[
1− P(F

k
(c)
i
| F

k−1(1)i
) +

P(X
k
(c)
i
| F

k
(c)
i

)× P(F
k
(c)
i
| F

k−1(1)i
)
]

=
E[Sk(1) ]

E[Sk−1(1) ]

nk∏
c=2

[
1− E[Sk(c) ]

E[Sk−1(1) ]
+

E[Xk(c) ]

E[Sk−1(1) ]

]
(64)
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Again with a change of index the terms of the product are the same as for the extinction event
in equation (53). However the product is only over the siblings of fk(1) and does not include
fk(1) itself, whereas in the case of extinctions the product was over all children.

Using the conditional probabilities P(D
k
(1)
i
| D

k−1(1)i
) and the chain equation (60) we obtain

the probability for species i in f0 to be dominated by fragment fk(1) :

P(D
k
(1)
i

) =
k∏

t=1

P(D
t
(1)
i
| D

t−1(1)i
)

=
k∏

t=1

[
E[St(1) ]

E[St−1(1) ]

nt∏
c=2

[
1− E[St(c) ]

E[St−1(1) ]
+

E[Xt(c) ]

E[St−1(1) ]

]]

=
E[Sk(1) ]

s0

k∏
t=1

[
nt∏
c=2

[
1− E[St(c) ]

E[St−1(1) ]
+

E[Xt(c) ]

E[St−1(1) ]

]]

=
E[Sk(1) ]

s0

k∏
t=1

[
nt∏
c=2

[
1

E[St−1(1) ]
(E[St−1(1) ]− E[St(c) ] + E[Xt(c) ])

]]

=
E[Sk(1) ]

s0

k∏
t=1

[
1

E[St−1(1) ]
nt−1

nt∏
c=2

(E[St−1(1) ]− E[St(c) ] + E[Xt(c) ])

]
. (65)

All species have an equal probability to be dominated by fk(1) . For all species i in the
original landscape (i = 1, . . . , s0) the D

k
(1)
i

variables describing the event to be dominated by

fk(1) are i.i.d. Bernoulli variables of parameter pD
k(1)

= P(D
k
(1)
i

). The number Dk(1) of species

dominated by fk(1) follows a Binomial distribution of parameters s0 and pD
k(1)

. Its expectation
and variance are given by:

E[Dk(1) ] = s0 · pD
k(1)

= E[Sk(1) ]
k∏

t=1

[
1

E[St−1(1) ]
nt−1

nt∏
c=2

(E[St−1(1) ]− E[St(c) ] + E[Xt(c) ])

]
(66)

Var[Dk(1) ] = s0 · pD
k(1)
· (1− pD

k(1)
)

= E[Dk(1) ] ·
(

1− E[Dk(1) ]

s0

)
(67)

A9 Some basic definitions and laws of probability

X and Y are random variables and A, B and C are events. For further information on these
laws, see, e.g., Siegrist [1997–2012].

Topic Definitions and laws
Bernoulli distribution Y ∼ Bernoulli(p)⇒ P(Y = 1) = p and P(Y = 0) = 1− p

E[Y ] = p
Var[Y ] = p(1− p)

Binomial distribution If Y1, . . . , Yn are independent, identically distributed (i.i.d.)
Bernoulli variables with success probability p, then
Z =

∑n
k=1 Yk ∼ Binomial(n, p)

E[Z] = n · p
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Var[Z] = n · p · (1− p)

Mean Bernoulli nȲ ∼ Binomial(n, p)
E[Ȳ ] = p

Var[Ȳ ] = p·(1−p)
n

Expected value E[Y ] =
∑

k k · P(Y = k) for discretely valued Y
Linearity E[aX + bY + c] = aE[X] + bE[Y ] + c

Variance Var[Y ] =
∑

k P(Y = k) · (k − E[Y ])2

Of linear combinations Var[aX + bY ] = a2Var[X] + b2Var[Y ] + 2ab · Cov[X, Y ]

Chain rule P(A ∩B) = P(A | B)× P(B)

P(
⋂n

k=1Ak) =
∏n

k=1 P(Ak |
⋂k−1

j=1 Aj)

Conditional independence A and B are conditionally independent given C if and only if
P(A ∩B | C) = P(A | C)× P(B | C)
⇔ P(A | B ∩ C) = P(A | C)

Independence P(A ∩B) = P(A)× P(B)⇔ P(A | B) = P(A)

Mutual independence P (
⋂n

k=1Ak) =
∏n

k=1 P(Ak)

Inclusion-exclusion P(A ∪B) = P(A) + P(B)− P(A ∩B)
principle

Disjoint events P(A ∪B) = P(A) + P(B)
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